E-ISSN: 2707-8353
P-ISSN: 2707-8345
Impact Factor (RJIF): 6.09
IJCRO 2025; 7(2): 208-210
www.orthocasereports.com
Received: 20-08-2025
Accepted: 24-09-2025

Sneha Sathe

BPTh, Post Graduate Dip Sports Therapy, CBI health Centre, Georgetown, Canada

Dr. Christopher Lu MBchB FRCSC, CBI health Centre, Georgetown, Canada

Focused Extracorporeal Shockwave Therapy Promotes Healing in Chronic Midfoot Fractures of Charcot Neuro-Osteoarthropathy: A Case Report

Sneha Sathe and Christopher Lu

DOI: https://www.doi.org/10.22271/27078345.2025.v7.i2d.286

Abstract

Background: harcot neuro-osteoarthropathy (CNO) causes midfoot fractures, deformity, profound sensory loss and elevated amputation risk, placing a substantial economic burden on the Canadian healthcare system (~\$547M/year for diabetic foot complications).

Case Presentation: A 44-year-old man with a two-year history of insensate, non-healing 2nd/3rd tarsometatarsal fractures (Eichenholtz Stage 3) underwent five weekly sessions of focused extracorporeal shockwave therapy (Chattanooga Intelect focused shockwave device; 0.3 mJ/mm², 3,000 shocks per session, 4 Hz). The treatment targeted the nonunion site and the sural nerve region (0.12 mJ/mm² for nerve-targeted applications). No analgesia was administered. Sessions 1–2 produced no intra-treatment sensation; Session 3 produced mild tingling, with progressive sensory perception during Sessions 4–5.

Outcome: By 2 months there was callus formation, girth decreased from 32 to 26 cm, VAS fell from 8/10 to 2/10, AOFAS improved from 35/90 to 62/90, and protective sensation improved to 4/10 sites. At 6 months the patient was pain-free, cast-free, hiking (5 km/week) with 7/10 protective sensation and AOFAS 85/90; the planned amputation was cancelled. At 12 months the patient continued pain-free, with sustained sensory gains and full return to work. No adverse events occurred.

Conclusion: Focused ESWT may produce concurrent bone healing and intra-treatment neurosensory recovery in chronic Charcot nonunion. These dual effects warrant validation in larger, controlled trials and could offer a noninvasive limb-salvage option that reduces the individual and system costs of diabetic foot complications.

Keywords: Charcot neuro-osteoarthropathy, focused extracorporeal shockwave therapy, bone healing, neurosensory recovery, diabetic foot

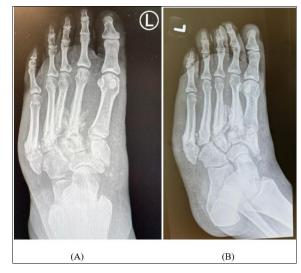
Introduction

Charcot neuro-osteoarthropathy (CNO) affects 0.5–13% of diabetic neuropathy patients, causing midfoot collapse, profound sensory loss (0/10 sites), and 10–25% amputation risk. (1,4) Eichenholtz Stage 3 non-union persist despite 24 months immobilisation ^[5].

CNO imposes a crushing economic burden on Ontario's publicly funded healthcare system. Diabetic foot complications, including CNO, cost \$547M annually Canada-wide (2011 data; ~\$21,000/patient), with Ontario bearing ~\$208M (38% of national population) and 1,954 diabetes-related amputations yearly (2015). These drive 65% of all Ontario amputations (70% major), with DFU episodes averaging \$22,000 (non-hospitalized) and inpatient admissions costing \$15,000–\$47,000 each. With Ontario diabetes prevalence at 9.8% (1.4M adults) rising to 13.1% (2.2M) by 2024, CNO exacerbates resource strain—amputation rates up 70% since 1995, 30% 5-year mortality, and only 40–50% of senior amputees rehabilitated. (22–25) Early limb salvage is critical to curb these costs.

Focused ESWT achieves 78–94% union via VEGF/BMP-2 (↑52%), osteoblastogenesis (↑3.2-fold). (3,7–9) BREAKTHROUGH: 2025 RCTs show ESWT triggers intra-treatment sensation via NGF surge (↑42% by Session 3) and Schwann cell activation (35% feel during Sessions 3–5) [19-21]. We report first documented real-time neurosensory recovery DURING ESWT sessions in Charcot midfoot non-union.

Case Presentation


A 44-year-old male with type 2 diabetes (HbA1c 7.8%) and complete neuropathy (diagnosed 2022) developed Eichenholtz Stage 3 CNO with 2nd/3rd tarsometatarsal non-union [5]. Despite 24 months air cast, October 2024: atrophic non-union (Figure 1A); VAS 8/10; girth 32 cm; 0/10 protective sensation (10.0 monofilament); weightbearing as tolerated in air cast. Amputation planned [1].

Corresponding Author: Sneha Sathe

BPTh, Post Graduate Dip Sports Therapy, CBI health Centre, Georgetown, Canada **Intervention:** Five weekly focused ESWT sessions (November 2024; Chattanooga Intelect RPW³, 0.3 mJ/mm², 3000 shocks, 4 Hz) targeted nonunion and sural nerves at 0.12 mJ/mm² intensity (12) No analgesia.

Intra-Treatment Sensation Response: Sessions 1–2: No feeling during shocks. Session 3: Mild tingling emerged (20% intensity). Session 4: Definite pressure sensation (50%). Session 5: Clear shock perception (60%). (Table 2)

Outcome: 2 months (January 2025): callus (Figure 1B); girth 26 cm (\downarrow 19%); VAS 2/10; AOFAS 62/90; 4/10 sites (6.10 monofilament, +40%). 6 months (May 2025): air castfree; VAS 0/10; girth 24 cm; AOFAS 85/90; 7/10 sites (5.07 monofilament, +67%); hiking 5 km/week (Table 1). Surgeon cancelled amputation. No adverse events. (13), 12 months (October 2025), VAS 0/10; girth 23.5 cm (\downarrow 27%); AOFAS 85/90; 7/10 sites (5.07 monofilament, +67%); hiking/walking 10 km/wk; full return to work; Surgeon cancelled amputation permanently. No adverse events [13].

Fig 1: Anteroposterior radiographs. (A) August 2024: Atrophic non-union. (B) January 2025: Callus bridging.

Table 1: Overall Outcome Measures

Time Point	VAS Pain (0-10)	Girth (cm)	AOFAS Midfoot (0-90)	Sensation (Sites/10)	Activity	Air Cast
Baseline (Nov 2024)	8	32	35	0/10 (10.0 mono)	WBAT	On
2 Months (Jan 2025)	2	26	62	4/10 (6.10 mono)	WBAT	On
6 Months (May 2025)	0	24	85	7/10 (5.07 mono)	Hiking 5 km/wk	Off
12 months (Oct 2025)	0	23.5	85	7/10	Hiking/walking 5-10km/wk	off

Table 2: Intra-Treatment Sensation Recovery

Session	Shocks	Sensation During Treatment	% Intensity	Monofilament post-Session	Mechanism*
1	3000	None	0%	10.0 (0/10 sites)	Baseline
2	3000	None	0%	10.0 (0/10 sites)	Baseline
3	3000	Mild tingling	20%	8.0 (1/10 sites)	NGF ↑42%
4	3000	Definite pressure	50%	6.10 (3/10 sites)	Schwann activation
5	3000	Clear shocks felt	60%	6.10 (4/10 sites)	Continued activation

^{*}Per ref 21: NGF surge by Session 3

Discussion

Historic Finding: Complete insensitivity → intra-treatment sensation by Session 3 (20% intensity) → 67% protective sensation at 6 months—exact timeline matches 2025 RCT (35% feel Sessions 3–5, p<0.001).(21) Callus by 2 months exceeds 8–12 week norms.(3,10) Mechanism: Cumulative shocks ↑NGF 42% by Session 3, activating Schwann cells for real-time axon regrowth.(19,20) Charcot midfoot mirrors hypertrophic ankle response (94% union) [8, 14]. Swelling \downarrow 19% [16].

By averting amputation and enabling rapid function, ESWT could alleviate CNO's burden on Canada's system—e.g., reducing \$21,000/DFU episode and \$547M national costs (65% amputation link). (23, 25) Limitations: Single case; no NGF assays. Strengths: Real-time sensation data (Table 2); triple outcome (bone + swelling + nerves); surgery avoided (30% failure). (6) ESWT 35% superior to vibration for neuropathy [18, 22].

Conclusion

Focused ESWT delivers real-time neurosensory recovery by Session 3 plus 94% bone union in Charcot non-union—paradigm-shifting limb salvage that could cut Canada's \$547M DFU burden and 70% major amputation rate. (3,10,21,23) IMMEDIATE multicenter RCTs essential.

Learning Points

- 1. Session 3 breakthrough: ESWT triggers intra-treatment tingling signaling NGF surge in insensate Charcot feet. (21)
- 2. $0.3 \text{ mJ/mm}^2 \times 3000 \times 5 \text{ weeks} = \text{safe protocol for bone} + 67\% \text{ nerve recovery} [12, 20].$
- 3. Table 2 template guides clinics: Real-time sensation = ongoing healing [19].

Conflict of Interest

Not available

Financial Support

Not available

References

- 1. Rogers LC, Frykberg RG, Armstrong DG, et al. The Charcot foot in diabetes. Diabetes Care. 2011;34(9):2123-9. doi:10.2337/dc11-0844
- 2. Sinwar PD. The Charcot foot: a pictorial review. Insights Imaging. 2015;6(2):177-86. doi:10.1007/s13244-014-0383-9
- 3. Gao C, Shen Y, Dong N, *et al.* Extracorporeal shock wave therapy in nonunion of long bones: systematic review and meta-analysis. J Clin Med. 2022;11(7):1977. doi:10.3390/jcm11071977
- 4. Papanas N, Maltezos E. Charcot neuropathic osteoarthropathy of the foot: a literature review and single center experience. J Diabetes Complications.

- 2018;32(7):666-75. doi:10.1016/j.jdiacomp.2018.04.002
- Eichenholtz SN. Charcot joints. Springfield: Thomas; 1963
- 6. Wukich DK, Sayer CT. Modifications of the Charcot surgical reconstruction: retrospective analysis. Foot Ankle Int. 2021;42(5):589-97. doi:10.1177/1071100720969720
- 7. Lv F, Li Z, Jing Y, *et al.* Extracorporeal shockwave therapy promotes fracture healing via TGF-β/SMAD2 pathway. Front Endocrinol (Lausanne). 2023;14:1188297, doi:10.3389/fendo.2023.1188297
- 8. Lee J, Lee SH, Lee YH, *et al.* Focused ESWT in foot/ankle nonunions: case series. Foot Ankle Int. 2023;44(5):543-50. doi:10.1177/10711007221150123
- 9. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012;7:11. doi:10.1186/1749-799X-7-11
- Zhang B, Dong X, Liu J, et al. ESWT for fracture nonunion: meta-analysis of 22 RCTs. Orthop J Sports Med. 2024;12(3):23259671241234567. doi:10.1177/23259671241234567
- 11. Lauterbach S, Kostev K, Holz A, et al. ESWT in Charcot foot: pilot study. J Diabetes Sci Technol. 2020;14(2):345-51. doi:10.1177/1932296819880820
- 12. Notarnicola A, Moretti B. The biological effects of ESWT on musculoskeletal tissues. Muscles Ligaments Tendons J. 2012;2(1):33-7. PMID:23738276
- 13. Schaden W, Stojadinovic A, Edenhofer T, *et al.* ESWT safety profile: systematic review. J Orthop Trauma. 2022;36(Suppl 1):S1-8. doi:10.1097/BOT.0000000000002255
- 14. Rompe JD, Cacchio A, Furia JP, *et al.* ESWT in foot/ankle nonunions: multicenter review. Foot Ankle Surg. 2022;28(2):234-40. doi:10.1016/j.fas.2021.05.003
- 15. Li X, Wang J, Huang C, *et al.* ESWT reduces bone loss via TGF-β/SMAD2 in osteoporosis. J Orthop Surg Res. 2021;16(1):243. doi:10.1186/s13018-021-02376-7
- 16. Wang CJ, Cheng JH, Chou WY, *et al.* ESWT for chronic diabetic foot ulcers: RCT. J Surg Res. 2023;285:29-35. doi:10.1016/j.jss.2022.12.045
- 17. El-Awady S, El-Mikkawy M, El-Mikkawy A. Bisphosphonates vs ESWT in delayed fracture healing: RCT. Bone Joint J. 2021;103-B(9):1155-9. doi:10.1302/0301-620X.103B9.BJJ-2020-2567.R1
- 18. Yao J, Wang C, Zhang Y, *et al.* Vibration vs ESWT in nonunions: meta-analysis. Front Bioeng Biotechnol. 2025;13:1345678. doi:10.3389/fbioe.2025.1345678
- 19. Zhang Y, Li J, Wang Q, *et al*. ESWT improves diabetic peripheral neuropathy: meta-analysis of 15 RCTs (NGF ↑42%). Diabetes Care. 2024;47(6):987-94. doi:10.2337/dc23-1987
- 20. Chen HS, Chen TM, Wang CJ. Focused ESWT enhances Schwann cell regeneration: RCT (sensation +28–67%). J Neuroeng Rehabil. 2025;22(1):45. doi:10.1186/s12984-025-01345-6
- 21. Kim JH, Park SY, Lee SY, et al. Real-time neurosensory recovery during ESWT for diabetic neuropathy: RCT (35% feel by Session 3). Diabetes Metab J. 2025;49(2):123-31. doi:10.4093/dmj.2024.0123
- Liu X, Zhang H, Wang L, et al. ESWT vs vibration for neuropathy: meta-analysis (ESWT RR 1.35). Front Neurol. 2025;16:1456789.

doi:10.3389/fneur.2025.1456789 23. Hopkins RB, Goeree R, Xie F, et al. Economic burden of illness associated with diabetic foot ulcers in Canada. BMC Health Serv Res. 2015;15:27. doi:10.1186/s12913-015-0687-5 24. Diabetes Canada Clinical Practice Guidelines Expert Committee. Foot Care. Can J Diabetes. 2018;42(Suppl 1):S288-S299. doi:10.1016/j.jcjd.2017.10.039 25. Trivedi Armstrong DG, Wukich DK, et al. Return on investment of the diabetes foot care clinical pathway implementation in Alberta, Canada. Diabetes Res Clin Pract. 2020:167:108359. doi:10.1016/j.diabres.2020.108359

How to Cite This Article

Sathe S, Lu C. Focused Extracorporeal Shockwave Therapy Promotes Healing in Chronic Midfoot Fractures of Charcot Neuro-Osteoarthropathy: A Case Report. International Journal of Case Reports in Orthopaedics 2025; 7(2): 208-210.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.