P-ISSN: 2707-8345 Impact Factor (RJIF): 6.09 IJCRO 2025; 7(2): 311-213 www.orthocasereports.com Received: 22-08-2025 Accepted: 26-09-2025

E-ISSN: 2707-8353

Guilherme Blois Vasconcelos Pereira

Physician at the National Institute of Traumatology and Orthopedics, Rio de Janeiro -R I. Brazil

Rodrigo Sattamini Pires e Albuquerque

¹ Physician at the National Institute of Traumatology and Orthopedics, Rio de Janeiro -RJ, Brazil

^{2]} Faculty of Medicine of the Fluminense Federal University, Niterói- RJ, Brazil

Fabiana Alves Costa Menegassi Physician at the National Institute of Traumatology and Orthogodies Rio de Luceiro

Orthopedics, Rio de Janeiro -RJ, Brazil

Diego Goltara Severgnine

Physician at the National Institute of Traumatology and Orthopedics, Rio de Janeiro -RJ, Brazil

Corresponding Author: Guilherme Blois Vasconcelos Pereira

Physician at the National Institute of Traumatology and Orthopedics, Rio de Janeiro -RJ, Brazil

Total knee arthroplasty in a patient with a history of Tibial osteomyelitis case report

Guilherme Blois Vasconcelos Pereira, Rodrigo Sattamini Pires e Albuquerque, Fabiana Alves Costa Menegassi and Diego Goltara Severgnine

DOI: https://www.doi.org/10.22271/27078345.2025.v7.i2d.288

Abstract

The authors report the rare occurrence of a case of tibial osteomyelitis in a patient with severe genu valgum associated with recurvatum who underwent total knee arthroplasty. A literature review is provided, and the correlation between total knee arthroplasty and previous osteomyelitis is discussed. Single-stage total knee arthroplasty is a viable option for a patient with a history of osteomyelitis associated with genu valgum and recurvatum.

Keywords: Total knee arthroplasty, osteomyelitis, infection

Introduction

Total Knee Arthroplasty (TKA) is a major surgical procedure subject to postoperative complications, with infection being one of the most severe and feared, representing a true challenge for the orthopedic surgeon due to its difficult and prolonged treatment [1].

In the international literature, the incidence of infection ranges from 1% to 5%. In high-volume centers with specialized teams and extensive experience in TKA, this rate can be reduced to less than 1% [2].

Post-TKA infections can occur via three mechanisms: direct bacterial implantation, hematogenous spread or reactivation of a dormant focus.² Conditions such as septic arthritis, osteomyelitis or previous surgical manipulations may lead to infection due to reactivation of a dormant osteoarticular focus [2].

TKA is generally a successful procedure with good outcomes; however, patients with a history of osteomyelitis are at higher risk of developing an infection following joint replacement [3].

Osteomyelitis can cause significant bone destruction and soft tissue damage, leading to pain, systemic malaise and functional deficits [3].

The aim of this study was to present a case of total knee arthroplasty in a patient with osteoarthritis associated with genu valgum, recurvatum and a history of osteomyelitis.

Case Report

A 61-year-old female patient, a hairdresser, hypertensive, with a body mass index (BMI) of 31 kg/m², presented with severe pain in the left knee. Her medical history revealed a total hip arthroplasty for coxarthrosis, as well as a history of osteomyelitis in the left leg with 42 years of evolution. On physical examination, a severe reducible genu valgum deformity of the knee associated with recurvatum was observed (Figure 1). The range of motion was from -10° to 80°. Additionally, a scar was noted on the anterior aspect of the left leg, resulting from previous osteomyelitis surgery. This surgical scar showed no signs of inflammatory changes. Preoperative blood tests were requested, with the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels within normal limits. Radiographic examination revealed a lytic lesion in the medial diaphysis of the tibia (Figure 2).

The patient underwent spinal anesthesia combined with femoral nerve and sciatic nerve peripheral block. The surgery was performed under ischemia with a pneumatic tourniquet inflated to 125 mmHg, which was 50 mmHg above the patient's systolic blood pressure, after exsanguination of the limb. The surgical procedure was carried out with the patient in the supine position, using the classic medial parapatellar approach. An extramedullary tibial guide was utilized. The implant used was the Legion model (Smith & Nephew®), a posterior-stabilized prosthesis with patellar substitution.

In the immediate postoperative period, the patient showed improvement in pain and knee function. The patient returned to her usual activities, satisfied with the surgical outcome. The range of motion was from 0° to 95°. The

Knee Society Score (KSS) functional score⁴ improved from 48 preoperatively to 90 postoperatively, with three and a half years of clinical follow-up (Figure 3).

Fig 1: Pre operative clinical evaluation

Fig 2: Pre-operative radiographic evaluation

Fig 3: Post-operative radiographic evaluation

Discussion

Nishitani *et al.* report a case of a patient with a history of osteomyelitis that had persisted for 64 years. The patient underwent a hinge-type total knee arthroplasty (TKA) due to knee recurvatum and limited range of motion ^[5]. According to these authors, TKA or arthrodesis are the only surgical alternatives for this type of patient ^[5]. We believe that knee arthrodesis is a procedure of last resort. Our patient presented with genu valgum and recurvatum, and the implant used was a primary posterior-stabilized TKA.

In patients with a history of osteomyelitis, there is concern that TKA may activate dormant microorganisms [3]. As such, the literature on this topic is limited, highlighting the relevance of our case.

Jerry et al. contraindicate TKA in patients with a history of knee osteomyelitis [6]. Our patient had a history of

osteomyelitis in the tibial diaphysis with a long period of evolution without recurrence. Given this, we chose knee joint replacement as the treatment option.

Total knee replacement (TKA) following adjacent bone osteomyelitis is a challenge, not only due to the risk of infection recurrence but also because of the increased risk of complications arising from associated changes in the skin, soft tissues, and bones [3]. Some authors recommend performing TKA in two stages in patients with a history of osteomyelitis [7-8]. Willians *et al.* presented a series of four patients who underwent single-stage TKA [3]. In this study, three patients developed immediate postoperative complications, and the fourth patient eventually required knee arthrodesis [3]. On the other hand, Lee *et al.* reported satisfactory outcomes in patients with a history of osteomyelitis who underwent single-stage TKA [9]. Our

approach was to perform the joint replacement in a single stage, reducing the number of surgeries.

Nazarian *et al.* described three patients with osteomyelitis who underwent two-stage TKA, with none of the patients experiencing infection recurrence after an average follow-up of 4.5 years ^[8]. Our study had a follow-up of 3.5 years with no signs of infection.

The decision to proceed with TKA is based on the patient's history, clinical examination, and radiological findings of advanced osteoarthritic changes ^[3]. We agree with this statement and emphasize the importance of a thorough clinical history.

The literature recommends the use of an extramedullary tibial guide in these cases ^[3]. In our opinion, avoiding the tibial intramedullary canal reduces the risk of bleeding and infection. Therefore, an extramedullary tibial guide was used

Lee *et al.* advocate for the use of antibiotic-loaded orthopedic cement ^[9]. We share this perspective and used cement impregnated with vancomycin.

Conclusion

Single-stage total knee arthroplasty (TKA) is a viable option for a patient with a history of osteomyelitis associated with genu valgum and recurvatum.

Conflict of Interest

Not available

Financial Support

Not available

Reference

- 1. D'Elia CO, Santos ALG, Leonhardt MC, Lima ALLM, Pécora JR, Camanho GL. Tratamento das infecções pós artroplastia total de joelho: resultados com 2 anos de seguimento. Acta Ortop Bras. 2007; 15(3):158-62.
- Lima ALLM; Pécora JR; Albuquerque RM; Paula AP; D'Elia CO; Santos ALG; Croci AT. Infecção pósartoplastia total do joelho: considerações e protocolo de tratamento. Acta Ortopedica Brasileira. 2004;12: 236-41
- 3. Williams RL, Khan W, Roberts-Huntleigh N, Morgan-Jones R. Total knee arthroplasty in patients with prior adjacent multi-organism osteomyelitis. Acta Orthop Belg. 2018; 84(2):184-91.
- 4. Silva AL, Demange MK, Gobbi RG, da Silva TF, Pécora JR, Croci AT. Translation and validation of the Knee Society Score KSS for Brazilian Portuguese. Acta Ortop Bras. 2012;20(1):25-30.
- 5. Nishitani K, Nakagawa Y, Suzuki T, Koike K, Nakamura T. Rotating-hinge total knee arthroplasty in a patient with genu recurvatum after osteomyelitis of the distal femur. J Arthroplasty. 2007;22:630-3.
- Jerry GJ Jr, Rand JA, Ilstrup D. Old sepsis prior to total knee arthroplasty. Clin Orthop Relat Res. 1988 Nov;(236):135-40.
- 7. Moyad TF. Two-stage arthroplasty for the treatment of chronic osteomyelitis after routine arthroscopic knee surgery. Orthopedics. 2013;36:e109-12.
- 8. Nazarian DG, de Jesus D, McGuigan F, Booth RE Jr. A two-stage approach to primary knee arthroplasty in the infected arthritic knee. J Arthroplasty. 2003;18:16-21.

9. Lee GC, Pagnano MW, Hanssen AD. Total knee arthroplasty after prior bone or joint sepsis about the knee. Clin Orthop Relat Res. 2002;(404):226-31.

How to Cite This Article

Pereira GBV, Albuquerque RSPE, Menegassi FAC, Severgnine DG. Total Knee Arthroplasty in a Patient with a History of Tibial Osteomyelitis Case Report. International Journal of Case Reports in Orthopaedics 2025; 7(2): 211-213.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.